Thus, V. parahaemolyticus has become the predominant harmful factor of raw shrimp (Pu et al., 2013;Su and Liu, 2007). Additionally, cooked shrimp are often picked by hand, and also can be easily contaminated with V. parahaemolyticus through bad manufacturing practices and poor personal hygiene McCarthy, 1997;Wang et al., 2014) during each course including storage, transportation and distribution (Dupard et al., 2006;Gudbjorndottir et al., 2005). Moreover, risk assessment of V. parahaemolyticus on cooked black tiger shrimp has been conducted in Malaysia in 2008 and 2012, and the results showed that consuming cooked shrimp could cause illness related with V. parahaemolyticus (Sani et al., 2012(Sani et al., , 2008. …
… Moreover, risk assessment of V. parahaemolyticus on cooked black tiger shrimp has been conducted in Malaysia in 2008 and 2012, and the results showed that consuming cooked shrimp could cause illness related with V. parahaemolyticus (Sani et al., 2012(Sani et al., , 2008. Therefore, food scientists and food industry are searching for novel non-thermal methods that could destroy undesired microorganisms with less adverse effects on products (Ju et al., 2008;Wang et al., 2014). …
… Several studies have been performed on non-thermal methods for decontaminating bacteria on fresh produce, such as organic acids, compounds of chlorine, pulsed electric field (PEF), etc. (Ding et al., 2010;Huang et al., 2014;Pipek et al., 2006). Acidic electrolyzed water (AEW) is regarded as one of the most promising, with a high efficacy for inactivating food-borne pathogens (Ding et al., 2010;Wang et al., 2014). It has been demonstrated that AEW has a strong disinfectant effect on V. parahaemolyticus.
To examine the magnitude of bacterial load reduction on the surface of the periocular skin 20 minutes after application of a saline hygiene solution containing 0.01% pure hypochlorous acid (HOCl).
Methods
Microbiological specimens were collected immediately prior to applying the hygiene solution and again 20 minutes later. Total microbial colonies were counted and each unique colony morphology was processed to identify the bacterial species and to determine the susceptibility profile to 15 selected antibiotics.
Results
Specimens were analyzed from the skin samples of 71 eyes from 36 patients. Prior to treatment, 194 unique bacterial isolates belonging to 33 different species were recovered. Twenty minutes after treatment, 138 unique bacterial isolates belonging to 26 different species were identified. Staphylococci accounted for 61% of all strains recovered and Staphylococcus epidermidis strains comprised 60% of the staphylococcal strains. No substantial differences in the distribution of Gram-positive, Gram-negative, or anaerobic species were noted before and after treatment. The quantitative data demonstrated a >99% reduction in the staphylococcal load on the surface of the skin 20 minutes following application of the hygiene solution. The total S. epidermidis colony-forming units were reduced by 99.5%. The HOCl hygiene solution removed staphylococcal isolates that were resistant to multiple antibiotics equally well as those isolates that were susceptible to antibiotics.
Conclusion
The aim of this study was to investigate the in-vitro antimicrobial activity of usage and normal concentrations of electrolyzed water in hospital. In our study, the effects of different concentrations of electrolyzed water named Envirolyte® (Industries International Ltd., Estonia) on two gram positive, four gram negative standard strains and clinical isolates of four gram negative, two gram positive, one spore-forming bacillus and Myroides spp strains that lead to hospital infections were researched. The effects of different concentrations and different contact times of Envirolyte® electrolyzed water on cited strains were researched through method of qualitative suspension tests. Petri dishes fo bacteria have been incubated at 37°C 48 hours. Bactericidal disinfectant was interpreted to be effective at the end of the period due to the lack of growth. Solutions to which disinfectant were not added were prepared with an eye to control reproduction and controlcultures were made by using neutralizing agents. 1/1, 1/2, and 1/10 concentrations of Envirolyte® electrolyzed water were found to be effective on the bacteria that lead to hospital infections used during all test times. As a conclusion, based upon the results we acquired, it was observed that Envirolyte® electrolyzed water of 100% concentration would be convenient to be used for disinfection when diluted to a usage concentration of 1/10.
Keywords: Electrolyzed water, disinfectant, bacteria
Super-oxidized water is one of the broad spectrum disinfectants, which was introduced recently. There are many researches to find reliable chemicals which are effective, inexpensive, easy to obtain and use, and effective for disinfection of microorganisms leading hospital infections. Antimicrobial activity of super-oxidized water is promising. The aim of this study was to investigate the in-vitro antimicrobial activity of different concentrations of Medilox® super-oxidized water that is approved by the Food and Drug Administration (FDA) as high level disinfectant.
Material and methods
In this study, super-oxidized water obtained from Medilox® [Soosan E & C, Korea] device, which had been already installed in our hospital, was used. Antimicrobial activities of different concentrations of super-oxidized water (1/1, 1/2, 1/5, 1/10, 1/20, 1/50, 1/100) at different exposure times (1, 2, 5, 10, 30 min) against six ATCC strains, eight antibiotic resistant bacteria, yeasts and molds were evaluated using qualitative suspension test. Dey-Engley Neutralizing Broth [Sigma-Aldrich, USA] was used as neutralizing agent.
Results
In vitro E.O. water studies on cell suspensions of bacteria and bacteria in biofilms have shown good results in their ability to kill food pathogens and spoilage organisms such as Listeria monocytogenes, Escherichia coli, Salmonella spp., Vibrio parahaemolyticus, and Pseudomonas spp. Ovissipour et al. 2015;Rahman et al. 2010). Research on the efficacy of E.O. water against those bacteria contaminating various food products has also shown excellent results in suppressing microbial contamination (Huang et al. 2006a;Kim and Hung 2012;Park et al. 2001;Pinto et al. 2015;Rahman et al. 2010;Shiroodi et al. 2016). …
… Ovissipour et al. 2015;Rahman et al. 2010). Research on the efficacy of E.O. water against those bacteria contaminating various food products has also shown excellent results in suppressing microbial contamination (Huang et al. 2006a;Kim and Hung 2012;Park et al. 2001;Pinto et al. 2015;Rahman et al. 2010;Shiroodi et al. 2016). …
… Secondly, alkaline electrolysed water (AlEW), also known as electrolysed reducing water (E.R water), is collected from the cathode side (Al-Haq et al. 2005 123 SAEW) (Xie et al. 2012;Zhang et al. 2015). It is also called low concentration electrolysed water (LcEW) (Rahman et al. 2010). In this paper E.O. water refers to neutralised or slightly acidic E.O. water unless otherwise stated.
https://sfamjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1472-765X.2005.01679.xAim: To ascertain the efficacy of neutral electrolysed water (NEW) in reducing Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes on glass and stainless steel surfaces. Its effectiveness for that purpose is compared with that of a sodium hypochlorite (NaClO) solution with similar pH, oxidation–reduction potential (ORP) and active chlorine content.
Methods and Results: First, the bactericidal activity of NEW was evaluated over pure cultures (8·5 log CFU ml−1) of the abovementioned strains: all of them were reduced by more than 7 log CFU ml−1 within 5 min of exposure either to NEW (63 mg l−1 active chlorine) or to NaClO solution (62 mg l−1 active chlorine). Then, stainless steel and glass surfaces were inoculated with the same strains and rinsed for 1 min in either NEW, NaClO solution or deionized water (control). In the first two cases, the populations of all the strains decreased by more than 6 log CFU 50 cm−2. No significant difference (P ≤ 0·05) was found between the final populations of each strain with regard to the treatment solutions (NEW or NaClO solution) or to the type of surface.
Conclusions: NEW was revealed to be as effective as NaClO at significantly reducing the presence of pathogenic and spoilage bacteria (in this study, E. coli, L. monocytogenes, P. aeruginosa and S. aureus) on stainless steel and glass surfaces.