Vibrio spp

Application of electrolysed oxidising water as a sanitiser to extend the shelf-life of seafood products: a review
Electrolysed oxidising water (E.O. water) is produced by electrolysis of sodium chloride to yield primarily chlorine based oxidising products. At neutral pH this results in hypochlorous acid in the un-protonated form which has the greatest oxidising potential and ability to penetrate microbial cell walls to disrupt the cell membranes. E.O. water has been shown to be an effective method to reduce microbial contamination on food processing surfaces. The efficacy of E.O. water against pathogenic bacteria such as Listeria monocytogenes, Escherichia coli and Vibrio parahaemolyticus has also been extensively confirmed in growth studies of bacteria in culture where the sanitising agent can have direct contact with the bacteria. However it can only lower, but not eliminate, bacteria on processed seafoods. More research is required to understand and optimise the impacts of E.O. pre-treatment sanitation processes on subsequent microbial growth, shelf life, sensory and safety outcomes for packaged seafood products.
Acidic Electrolyzed Water as a Novel Transmitting Medium for High Hydrostatic Pressure Reduction of Bacterial Loads on Shelled Fresh Shrimp
Acidic electrolyzed water (AEW), a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP) processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM) showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products.
Effect of acidic electrolyzed water-induced bacterial inhibition and injury in live clam (Venerupis philippinarum) and mussel (Mytilus edulis)
The effect of acidic electrolyzed water (AEW) on inactivating Escherichia coli O104:H4, Listeria monocytogenes, Aeromonas hydrophila, Vibrio parahaemolyticus and Campylobacter jejuni in laboratory contaminated live clam (Venerupis philippinarum) and mussel (Mytilus edulis) was investigated. The initial levels of bacterial contamination were: in clam 4.9 to 5.7 log10 CFU/g, and in mussel 5.1 to 5.5 log10 CFU/g. Two types of AEW were used for treatment time intervals of 1 and 2 h: strong (SAEW) with an available chlorine concentration (ACC) of 20 mg/L, pH = 3.1, and an oxidation-reduction potential (ORP) of 1150 mV, and weak (WAEW) at ACC of 10 mg/L, pH = 3.55 and ORP of 950 mV. SAEW and WAEW exhibited significant inhibitory activity against inoculated bacteria in both shellfish species with significant differences compared to saline solutions treatments (1–2% NaCl) and untreated controls (0 h). SAEW showed the largest inhibitory activity, the extent of reduction (log10 CFU/g) ranged from 1.4–1.7 for E. coli O104:H4; 1.0–1.6 for L. monocytogenes; 1.3–1.6 for A. hydrophila; 1.0–1.5 for V. parahaemolyticus; and 1.5–2.2 for C. jejuni in both types of shellfish. In comparison, significantly (P < 0.05) lower inhibitory effect of WAEW was achieved compared to SAEW, where the extent of reduction (log10 CFU/g) ranged from 0.7–1.1 for E. coli O104:H4; 0.6–0.9 for L. monocytogenes; 0.6–1.3 for A. hydrophila; 0.7–1.3 for V. parahaemolyticus; and 0.8–1.9 for C. jejuni in both types of shellfish. Among all bacterial strains examined in this study, AEW induced less bacterial injury (~ 0.1–1.0 log10 CFU/g) and more inactivation effect. This study revealed that AEW (10–20 mg/L ACC) could be used to reduce bacterial contamination in live clam and mussel, which may help control possible unhygienic practices during production and processing of shellfish without apparent changes in the quality of the shellfish.
Reduction of Escherichia coli and Vibrio parahaemolyticus Counts on Freshly Sliced Shad (Konosirus punctatus) by Combined Treatment of Slightly Acidic Electrolyzed Water and Ultrasound Using Response Surface Methodology
The aim of this study was to determine the combined effects of slightly acidic electrolyzed water [SAEW (pH range 5.0–6.5, oxidation–reduction potential 650–1000 mV, available chlorine concentration 10–80 mg/L)] containing 0, 15, and 30 ppm chlorine and 0, 50, and 100 min of ultrasound [US (37 kHz, 380 W)] using the central composite design (CCD) on the reductions of Escherichia coli and Vibrio parahaemolyticus (initial value, approximately 6–7 log10 colony forming unit (CFU) of E. coli or V. parahaemolyticus/g) and the sensory properties on freshly sliced shad (Konosirus punctatus), in comparison with SAEW or US alone. Another aim was to develop the response surface model for E. coli and V. parahaemolyticus in the shad treated with the combination of SAEW and US. Single treatments with SAEW (chlorine 15 ppm), SAEW (chlorine 30 ppm), or US for 50 min caused a much-less-than-1-log10 reduction in the number of both E. coli and V. parahaemolyticus in the shad. In contrast, the combination of SAEW (15 or 30 ppm chlorine) and US (50 or 100 min) caused >1-log10 reduction of E. coli numbers (1.04–1.86 log reduction) and V. parahaemolyticus (1.02–1.42 log reduction) in the shad. In addition, the sensory properties of the shad were not changed under the harshest conditions of the combination (SAEW with chlorine at 30 ppm and US for 100 min). Response surface models were developed for the population of E. coli (Y = 6.15322 − 0.024732X 1 − 0.016486X 2 − 0.00015X 1 X 2 + 0.00024X 1 2 + 0.00007X 2 2) and V. parahaemolyticus (Y = 5.67649 − 0.042598X 1 − 0.014013X 2 + 0.00003X 1 X 2 + 0.00006X 1 2 + 0.00062X 2 2 ), where Y is the bacterial population (log10 CFU), X 1 is ppm chlorine in SAEW, and X 2 is the duration of treatment (min) with US. The appropriateness of the models was verified by bias factor (B f; 1.10 for E. coli, 1.03 for V. parahaemolyticus), accuracy factor (A f; 1.11 for E. coli, 1.05 for V. parahaemolyticus), mean square error (MSE; 0.0087 for E. coli, 0.0028 for V. parahaemolyticus), and coefficient of determination (R 2; 0.976 for E. coli, 0.982 for V. parahaemolyticus). To produce a 1-log10 reduction of E. coli and V. parahaemolyticus, US treatment times for E. coli and V. parahaemolyticus were calculated within the maximum of 54 and 67 min, respectively, at chlorine 10 ppm in SAEW. SAEW chlorine concentrations (ppm) for E. coli and V. parahaemolyticus were calculated within the maximum of 38 and 41 ppm, respectively, at 20 min of US. Therefore, the resulting response surface models for E. coli and V. parahaemolyticus should be further validated on slices of other kinds of raw fish. Ultimately, the response surface quadratic polynomial equations may thus be used for predicting the combined treatments of SAEW and against E. coli and V. parahaemolyticus in raw fish production, processing, and distribution.

Thus, V. parahaemolyticus has become the predominant harmful factor of raw shrimp (Pu et al., 2013;Su and Liu, 2007). Additionally, cooked shrimp are often picked by hand, and also can be easily contaminated with V. parahaemolyticus through bad manufacturing practices and poor personal hygiene McCarthy, 1997;Wang et al., 2014) during each course including storage, transportation and distribution (Dupard et al., 2006;Gudbjorndottir et al., 2005). Moreover, risk assessment of V. parahaemolyticus on cooked black tiger shrimp has been conducted in Malaysia in 2008 and 2012, and the results showed that consuming cooked shrimp could cause illness related with V. parahaemolyticus (Sani et al., 2012(Sani et al., , 2008. …
… Moreover, risk assessment of V. parahaemolyticus on cooked black tiger shrimp has been conducted in Malaysia in 2008 and 2012, and the results showed that consuming cooked shrimp could cause illness related with V. parahaemolyticus (Sani et al., 2012(Sani et al., , 2008. Therefore, food scientists and food industry are searching for novel non-thermal methods that could destroy undesired microorganisms with less adverse effects on products (Ju et al., 2008;Wang et al., 2014). …
… Several studies have been performed on non-thermal methods for decontaminating bacteria on fresh produce, such as organic acids, compounds of chlorine, pulsed electric field (PEF), etc. (Ding et al., 2010;Huang et al., 2014;Pipek et al., 2006). Acidic electrolyzed water (AEW) is regarded as one of the most promising, with a high efficacy for inactivating food-borne pathogens (Ding et al., 2010;Wang et al., 2014). It has been demonstrated that AEW has a strong disinfectant effect on V. parahaemolyticus.

The objective of this study was to investigate the fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water (AEW) treatment during storage. Shrimp, inoculated with a cocktail of four strains of V. parahaemolyticus, were stored at different temperatures (4–30 °C) after AEW treatment. Experimental data were fitted to modified Gompertz and Log-linear models. The fate of V. parahaemolyticus was determined based on the growth and survival kinetics parameters (lag time, λ; the maximum growth rate, μmax; the maximum growth concentration, D; the inactivation value, K) depending on the respective storage conditions. Moreover, real-time PCR was employed to study the population dynamics of this pathogen during the refrigeration temperature storage (10, 7, 4 °C). The results showed that AEW treatment could markedly (p < 0.05) decrease the growth rate (μmax) and extend the lag time (λ) during the post-treatment storage at 30, 25, 20 and 15 °C, while it did not present a capability to lower the maximum growth concentration (D). AEW treatment increased the sensitivity of V. parahaemolyticus to refrigeration temperatures, indicated by a higher (p < 0.05) inactivation value (K) of V. parahaemolyticus, especially for 10 °C storage. The results also revealed that AEW treatment could completely suppress the proliferation of V. parahaemolyticus in combination with refrigeration temperature. Based on above analysis, the present study demonstrates the potential of AEW in growth inhibition or death acceleration of V. parahaemolyticus on seafood, hence to greatly reduce the risk of illness caused by this pathogen during post-treatment storage.

The objective of this study was to investigate the efficacy of acidic electrolyzed water (AEW) against Vibrio parahaemolyticus on shrimp. The shrimp was initially inoculated with V. parahaemolyticus(7–8 log CFU/g), and treated with AEW (AEW1 containing 51 mg/L of chlorine or AEW2 containing 78 mg/L of chlorine) or organic acids (2% AA and 2%LA) for 1 min or 5 min under different treated conditions. The effect of AEW was better than that of organic acids, the number of survival V. parahaemolyticus cells on shrimp was reduced by 0.9 log CFU/g after treatment for 5 min with AEW without vibration, while 1.0 log CFU/g bacteria cells reduced with vibration. No significant difference (p > 0.05) was observed between AEW and organic acids in the bactericidal activity with or without vibration. The effective order of temperatures on bactericidal activities of AEW was 50 °C > 20 °C > 4 °C, and a 3.1 log CFU/g reduction of V. parahaemolyticus cells on shrimp was detected with treatment of AEW at 50 °C. Mild heat greatly enhanced efficacy of electrolyzed water against V. parahaemolyticus. Basic electrolyzed water (BEW) (50 °C) pretreatment combined with AEW (50 °C) treatment remarkably reduced bacterial cells by 5.4 log CFU/g on shrimp after treatment for 5 min. There was a significant change in physicochemical properties (pH, ORP, ACC) of AEW, after it was used to wash shrimp (P < 0.05). This study suggests that BEW (50 °C) pretreatment followed by AEW (50 °C) treatment could be a possible method to effectively control V. parahaemolyticus contamination on shrimp.

The objective of this study was to evaluate physicochemical properties and bactericidal activities of acidic electrolyzed water (AEW) used or stored at different temperatures on shrimp. Three independent experiments were carried out. The first experiment was to evaluate the physicochemical properties and bactericidal activities of AEW used at three different temperatures (4, 20, 50 °C) against food-borne pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) contamination on cooked shrimp at 1 or 5 min; the second one was to monitor the bactericidal activity of AEW used at two temperatures (20, 50 °C) against total aerobic bacteria on raw shrimp at 5 min by conventional plate count method and PCR–DGGE method; the last one was to examine the physicochemical properties and bactericidal activities of AEW (AEW1, AEW2) stored at two temperatures (− 18, 25 °C) for 30 d against total aerobic bacteria on raw shrimp at 2 min. Results showed that AEW used at 50 °C showed the best bactericidal activity, leading to a log reduction of 3.11 for V. parahaemolyticus, 1.96 for L. monocytogenes and 1.44 for total aerobic bacteria at 5 min, respectively. Conventional plate count and PCR–DGGE (denaturing gradient gel electrophoresis) study further suggested that the bactericidal activity of AEW used at 50 °C was higher than at 20 °C. The loss of bactericidal activity of AEW stored at − 18 °C was less than that of stored at 25 °C, and the ORP and ACC decreased more slowly than those of stored at 25 °C. However, the ORP and ACC of AEW used at 50 °C showed a remarkably faster decrease than that of used at 20 °C. We suggest using AEW at 50 °C to enhance bactericidal activity and storing at − 18 °C to keep the content of ACC and the bactericidal activity.

Purpose

To examine the magnitude of bacterial load reduction on the surface of the periocular skin 20 minutes after application of a saline hygiene solution containing 0.01% pure hypochlorous acid (HOCl).
Methods

Microbiological specimens were collected immediately prior to applying the hygiene solution and again 20 minutes later. Total microbial colonies were counted and each unique colony morphology was processed to identify the bacterial species and to determine the susceptibility profile to 15 selected antibiotics.
Results

Specimens were analyzed from the skin samples of 71 eyes from 36 patients. Prior to treatment, 194 unique bacterial isolates belonging to 33 different species were recovered. Twenty minutes after treatment, 138 unique bacterial isolates belonging to 26 different species were identified. Staphylococci accounted for 61% of all strains recovered and Staphylococcus epidermidis strains comprised 60% of the staphylococcal strains. No substantial differences in the distribution of Gram-positive, Gram-negative, or anaerobic species were noted before and after treatment. The quantitative data demonstrated a >99% reduction in the staphylococcal load on the surface of the skin 20 minutes following application of the hygiene solution. The total S. epidermidis colony-forming units were reduced by 99.5%. The HOCl hygiene solution removed staphylococcal isolates that were resistant to multiple antibiotics equally well as those isolates that were susceptible to antibiotics.
Conclusion

The application of a saline hygiene solution preserved with pure HOCl acid reduced the bacterial load significantly without altering the diversity of bacterial species remaining on the skin under the lower eyelid.

Slightly acidic electrolyzed water (SAEW), considered as a broad-spectrum and high-performance bactericide are increasingly applied in the food industry. However, its disinfection mechanism has not been completely elucidated. This study aims to examine the disinfection efficacy and mechanism of SAEW on Staphylococcus aureus, compared with that of sodium hypochlorite (NaClO) and hydrochloric acid (HCl). SAEW treatment significantly reduced S. aureus by 5.8 log CFU/mL in 1 min, while 3.26 and 2.73 log reductions were obtained with NaClO and HCl treatments, respectively. A series of biological changes including intracellular potassium leakage, TTC-dehydrogenase relative activity and bacterial ultrastructure destruction were studied following disinfection treatment of S. aureus. The results showed that SAEW decreased the relative activity of TTC-dehydrogenase by 65.84%. Comparing intracellular potassium leakage, the SAEW treatment caused a greater percent of protein leakage (108.34%) than the NaClO (18.75%) or HCl (0.84%) treatments. These results demonstrated the potent impact SAEW had on the permeability of cell membranes. In addition, the ranking of partly agglutinated cellular inclusion formation was HCl > SAEW > NaClO. It appeared that HCl, along with its low pH value, are responsible for most of the cytoplasmic disruptions. Overall, this study demonstrated that the disinfection mechanism of SAEW was disrupting the permeability of cell membrane and the cytoplasmic ultrastructures in S. aureus cells.

The article focuses on investigation of the effects of usage of acidic electrolyzed water (AEW) with different sodium chloride concentration (0.001%, 0.01%, and 0.1%) for the preparation of carrageenan and gelatine hydrosols and hydrogels. To determine physiochemical properties of hydrosols, the pH, oxidation-reduction potential (ORP), available chloride concentration (ACC) and rheological parameters such us gelation and flow temperatures were measured. The samples were also characterized using Fourier transform infrared spectroscopy (FT IR) and texture profile analysis (TPA). Additionally, the article contains an analysis of antibacterial activity of carrageenan and gelatine hydrosols incorporated with acidic electrolyzed water, against Staphylococcus aureus and Escherichia coli. The FT IR spectra demonstrated that the structure of gelatine and carrageenan are not significantly affected by electrolyzed NaCl solution components. Furthermore, TPA analysis showed that the use of AEW did not cause undesirable changes in hydrogels layer. The microbiological analysis confirmed inhibition of bacterial growth by hydrosols to about 2.10 log reduction. The results showed that the range of reduction of microorganisms depends on the type AEW used. This might be explained by the fact that the lowest pH and the highest ACC values of hydrosols were obtained for samples with the longest period of exposure to electrolysis (10 min) and the highest amount of NaCl (0.1% w/v). These results suggest that hydrogels and hydrosols incorporated with AEW may be used for food preservation.

Aim

Super-oxidized water is one of the broad spectrum disinfectants, which was introduced recently. There are many researches to find reliable chemicals which are effective, inexpensive, easy to obtain and use, and effective for disinfection of microorganisms leading hospital infections. Antimicrobial activity of super-oxidized water is promising. The aim of this study was to investigate the in-vitro antimicrobial activity of different concentrations of Medilox® super-oxidized water that is approved by the Food and Drug Administration (FDA) as high level disinfectant.
Material and methods

In this study, super-oxidized water obtained from Medilox® [Soosan E & C, Korea] device, which had been already installed in our hospital, was used. Antimicrobial activities of different concentrations of super-oxidized water (1/1, 1/2, 1/5, 1/10, 1/20, 1/50, 1/100) at different exposure times (1, 2, 5, 10, 30 min) against six ATCC strains, eight antibiotic resistant bacteria, yeasts and molds were evaluated using qualitative suspension test. Dey-Engley Neutralizing Broth [Sigma-Aldrich, USA] was used as neutralizing agent.
Results

Medilox® was found to be effective against all standard strains (Acinetobacter baumannii 19606, Escherichia coli 25922, Enterococcus faecalis 29212, Klebsiella pneumoniae 254988, Pseudomonas aeruginosa 27853, Staphylococcus aureus 29213), all clinical isolates (Acinetobacter baumannii, Escherichia coli, vancomycin-resistant Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Myroides spp.), and all yeastsat 1/1 dilution in ≥ 1 minute. It was found to be effective on Aspergillus flavus at 1/1 dilution in ≥ 2 minutes and on certain molds in ≥ 5 minutes.

Salmonella spp. may be found in the nest box of breeder chickens, cold egg-storage rooms at the farm, on the hatchery truck, or in the hatchery environment (5). These bacteria may then be spread to fertilized hatching eggs on the shell or, in some cases, may penetrate the shell and reside just be-neath the surface of the eggshell.Research has demonstrated that contamination of raw poultry products with Salmonella spp. may be attributable to cross-contamination in the hatchery from Salmonella infected eggs or surfaces to uninfect-ed baby chicks during the hatching process. Cox et al. (6 and 7) reported that broiler and breeder hatch-eries were highly contaminated with Salmonella spp. Within the broiler hatchery, 71 percent of eggshell fragments, 80 percent of chick conveyor belts swabs, and 74 percent of pad samples placed under newly hatched chicks contained Salmonella spp. (6).Cason et al. (4) reported that, although fertile hatch-ing eggs were contaminated with high levels of Salmonella typhimurium, they were still able to hatch. The authors stated that paratyphoid salmonellae do not cause adverse health affects to the develop-ing and hatching chick. During the hatching pro-cess, Salmonella spp. is readily spread throughout the hatching cabinet due to rapid air movement by circulation fans. When eggs were inoculated with a marker strain of Salmonella during hatching, greater than 80 percent of the chicks in the trays above and below the inoculated eggs were contaminated (4). In an earlier study, Cason et al. (3) demonstrated that salmonellae on the exterior of eggs or in eggshell membranes could be transmitted to baby chicks dur-ing pipping

The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability ofStaphylococcus epidermidisbiofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximatethose in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10thstrength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10CFU/cm2wereobserved with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence ofciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those withoutat the same current levels. When current exposures were repeated without biofilm or organics in the medium, significantgeneration of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for eachcurrent level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in mediumlacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2,and 0 log reduction, respectively. Direct current also killedPseudomonas aeruginosabiofilms when NaCl was present.Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a maincontributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a criticalparameter in experimental design if direct current is to be investigated forin vivomedical applications.

In the current study, the effectiveness of slightly acidic electrolyzed water (SAEW) on an in vitro inactivation of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Salmonella spp. was evaluated and compared with other sanitizers. SAEW (pH 5.6, 23mg/l available chlorine concentration; ACC; and 940mV oxidation reduction potential; ORP) was generated by electrolysis of dilute solution of HCl (2%) in a chamber of a non-membrane electrolytic cell. One milliliter of bacteria suspension (ca. 10-11 log(10)CFU/ml) was mixed with 9ml of SAEW, strong acidic electrolyzed water (StAEW; ca. 50mg/l ACC), sodium hypochlorite solution (NaOCl; ca.120mg/l ACC) and distilled water (DW) as control and treated for 60s. SAEW effectively reduced the population of E. coli, S. aureus and Salmonella spp. by 5.1, 4.8, and 5.2 log(10)CFU/ml. Although, ACC of SAEW was more than 5 times lower than that of NaOCl solution, they showed no significant bactericidal difference (p>0.05). However, the bactericidal effect of StAEW was significantly higher (p<0.05) than SAEW and NaOCl solution in all cases. When tested with each individual test solution, E. coli, S. aureus and Salmonella spp. reductions were not significantly different (p>0.05). These findings indicate that SAEW with low available chlorine concentration can equally inactivate E. coli, S. aureus and Salmonella spp. as NaOCl solution and therefore SAEW shows a high potential of application in agriculture and food industry as an environmentally friendly disinfection agent.

Suspension quantitative germicidal test showed that electrolyzed oxidizing water (EO water) was an efficient and rapid disinfectant. Disinfection rates towards E. coli (available chlorine concentration ACC: 12.40 mg/L) and Staphylococcus aureus (ACC: 37.30 mg/L) could reach 100% at 1 and 3 min, respectively. Disinfection mechanism of EO water was investigated at a molecular biological level by detecting a series of biochemical indices. The results showed that the dehydrogenase activities of E. coli and S. aureus decreased rapidly, respectively, at the rates of 45.9% and 32% in the 1st minute treatment with EO water. EO water also improved the bacterial membrane permeability, causing the rise of conductivities and the rapid leakages of intracellular DNA, K+, and proteins in 1 min. The leakages of DNA and K+ tended to slow down after about 1 min while those of proteins began to decrease a little after reaching the peak values. The sodium dodecyl sulfonate polyacrylamide gel electrophoresis (SDS-PAGE) showed that EO water destroyed intracellular proteins. The protein bands got fainter and even disappeared as the treatment proceeded. EO water’s effects on the bacterial ultrastructures were also verified by the transmission electronic microscopy (TEM) photos. The disinfection mechanism of EO water was composed of several comprehensive factors including the destruction of bacterial protective barriers, the increase of membrane permeability, the leakage of cellular inclusions, and the activity decrease of some key enzymes.

Food safety issues and increases in food borne illnesses have promulgated the development of new sanitation methods to eliminate pathogenic organisms on foods and surfaces in food service areas. Electrolyzed oxidizing water (EO water) shows promise as an environmentally friendly broad spectrum microbial decontamination agent. EO water is generated by the passage of a dilute salt solution (∼1% NaCl) through an electrochemical cell. This electrolytic process converts chloride ions and water molecules into chlorine oxidants (Cl2, HOCl/ClO−). At a near-neutral pH (pH 6.3–6.5), the predominant chemical species is the highly biocidal hypochlorous acid species (HOCl) with the oxidation reduction potential (ORP) of the solution ranging from 800 to 900 mV. The biocidal activity of near-neutral EO water was evaluated at 25 °C using pure cultures of Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis. Treatment of these organisms, in pure culture, with EO water at concentrations of 20, 50, 100, and 120 ppm total residual chlorine (TRC) and 10 min of contact time resulted in 100% inactivation of all five organisms (reduction of 6.1–6.7 log10 CFU/mL). Spray treatment of surfaces in food service areas with EO water containing 278–310 ppm TRC (pH 6.38) resulted in a 79–100% reduction of microbial growth. Dip (10 min) treatment of spinach at 100 and 120 ppm TRC resulted in a 4.0–5.0 log10 CFU/mL reduction of bacterial counts for all organisms tested. Dipping (10 min) of lettuce at 100 and 120 ppm TRC reduced bacterial counts of E. coli by 0.24–0.25 log10 CFU/mL and reduced all other organisms by 2.43–3.81 log10 CFU/mL.

https://sfamjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1472-765X.2005.01679.xAim: To ascertain the efficacy of neutral electrolysed water (NEW) in reducing Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes on glass and stainless steel surfaces. Its effectiveness for that purpose is compared with that of a sodium hypochlorite (NaClO) solution with similar pH, oxidation–reduction potential (ORP) and active chlorine content.

Methods and Results: First, the bactericidal activity of NEW was evaluated over pure cultures (8·5 log  CFU ml−1) of the abovementioned strains: all of them were reduced by more than 7 log CFU ml−1 within 5 min of exposure either to NEW (63 mg l−1 active chlorine) or to NaClO solution (62 mg l−1 active chlorine). Then, stainless steel and glass surfaces were inoculated with the same strains and rinsed for 1 min in either NEW, NaClO solution or deionized water (control). In the first two cases, the populations of all the strains decreased by more than 6 log CFU 50 cm−2. No significant difference (P ≤ 0·05) was found between the final populations of each strain with regard to the treatment solutions (NEW or NaClO solution) or to the type of surface.

Conclusions: NEW was revealed to be as effective as NaClO at significantly reducing the presence of pathogenic and spoilage bacteria (in this study, E. coli, L. monocytogenes, P. aeruginosa and S. aureus) on stainless steel and glass surfaces.

Scroll to Top