All Viruses

Existence of bioaerosol contaminants in farms and outbreaks of some infectious organisms with the ability of transmission by air increase the need for enhancement of biosecurity, especially for the application of aerosol disinfectants. Here we selected slightly acidic hypochlorous acid water (SAHW) as a candidate and evaluated its virucidal efficacy toward a virus in the air. Three-day-old conventional chicks were challenged with 25 doses of Newcastle disease live vaccine (B1 strain) by spray with nebulizer (particle size <3 μm in diameter), while at the same time reverse osmosis water as the control and SAHW containing 50 or 100 parts per million (ppm) free available chlorine in pH 6 were sprayed on the treated chicks with other nebulizers. Exposed chicks were kept in separated cages in an isolator and observed for clinical signs. Oropharyngeal swab samples were collected from 2 to 5 days postexposure from each chick, and then the samples were titrated with primary chicken kidney cells to detect the virus. Cytopathic effects were observed, and a hemagglutination test was performed to confirm the result at 5 days postinoculation. Clinical signs (sneezing) were recorded, and the virus was isolated from the control and 50 ppm treatment groups, while no clinical signs were observed in and no virus was isolated from the 100 ppm treatment group. The virulent Newcastle disease virus (NDV) strain Sato, too, was immediately inactivated by SAHW containing 50 ppm chlorine in the aqueous phase. These data suggest that SAHW containing 100 ppm chlorine can be used for aerosol disinfection of NDV in farms.

The ability of acidic electrolyzed oxidizing water (AEO) and neutral electrolyzed oxidizing water (NEO) to inactivate the murine norovirus (MNV-1) surrogate for human norovirus and hepatitis A virus (HAV) in suspension and on stainless steel coupons in the presence of organic matter was investigated. Viruses containing tryptone (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0%) were mixed with AEO and NEO for 1 min. In addition, stainless steel coupons containing MNV-1 with or without organic matter were treated with AEO or NEO for 3, 5, and 10 min. AEO was proven effective and generally killed more MNV-1 and HAV in suspension than NEO. Depending on the EO water generator, free chlorine concentrations are required to inactivate MNV-1 and HAV by 3-log PFU/mL or greater ranged from 30 mg/L to 40 mg/L after a 1 min contact time. The virucidal effect increased with increasing free chlorine concentration and decreased with increasing tryptone concentration in suspension. Both AEO and NEO at 70–100 mg/L of free chlorine concentration significantly reduced MNV-1 on coupons in the absence of organic matter. However, there was no significant difference between these two treatments in the presence of organic matter. In addition, the efficacy of these two EO waters on stainless steel coupons increased with the increasing treatment time. Results indicated that AEO and NEO can reduce MNV-1 and HAV in suspension. However, higher free chlorine concentrations and longer treatment times may be necessary to reduce viruses on contact surfaces or in the presence of organic matter.

The virucidal effects of two types of electrolyzed water, acidic electrolyzed water (AEW) and neutral electrolyzed water (NEW), on avian influenza viruses were studied. Virus titers of the highly pathogenic H5N1 virus and the low-pathogenic H9N2 virus irreversibly decreased by >5-log at 1 min after the viruses were mixed with NEW containing ≥43 ppm free available chlorine (FAC), but not with NEW containing <17 ppm FAC. The minimum concentration of FAC for a virucidal effect of NEW was estimated at around 40 ppm. In contrast, the virus titers decreased by >5 log at 1 min after the viruses were mixed with AEW, in which the concentration of the FAC ranged from 72 to 0 ppm. Thus, the virucidal effect of AEW did not depend on the presence of FAC. Reverse transcription polymerase chain reaction amplified fragments of the M and NP genes, but not the complete M gene, from RNA extracted from the AEW-inactivated virus. Moderate morphological changes were found under the electron microscope, although no changes were observed in the electrophoresed proteins of the AEW-inactivated virus. No viral genes were amplified from the RNA extracted from the NEW-inactivated virus, regardless of the length of the targeted genes. No viral particles were detected under the electron microscope and no viral proteins were detected by electrophoresis for the NEW-inactivated virus. Thus, this study demonstrated potent virucidal effects of AEW and NEW and differences in the virucidal mechanism of the two types of electrolyzed water.

Noroviruses (NVs) are the most frequent cause of outbreaks of gastroenteritis in common settings, with surface-mediated transfer via contact with fecally contaminated surfaces implicated in exposure. NVs are environmentally stable and persistent and have a low infectious dose. Several disinfectants have been evaluated for efficacy to control viruses on surfaces, but the toxicity and potential damage to treated materials limits their applicability. Sterilox hypochlorous acid (HOCl) solution (HAS) has shown broad-spectrum antimicrobial activity while being suitable for general use. The objectives of this study were to evaluate the efficacy of HAS to reduce NV both in aqueous suspensions and on inanimate carriers. HOCl was further tested as a fog to decontaminate large spaces. HOCl effectiveness was evaluated using nonculturable human NV measured by reverse transcriptase PCR (RT-PCR) and two surrogate viruses, coliphage MS2 and murine NV, that were detected by both infectivity and RT-PCR. Exposing virus-contaminated carriers of ceramic tile (porous) and stainless steel (nonporous) to 20 to 200 ppm of HOCl solution resulted in ≥99.9% (≥3 log10) reductions of both infectivity and RNA titers of tested viruses within 10 min of exposure time. HOCl fogged in a confined space reduced the infectivity and RNA titers of NV, murine NV, and MS2 on these carriers by at least 99.9% (3 log10), regardless of carrier location and orientation. We conclude that HOCl solution as a liquid or fog is likely to be effective in disinfecting common settings to reduce NV exposures and thereby control virus spread via fomites.

Scroll to Top